$\overline{}$
-
Ω
- 7
_
α
N
0
Q
+
5
_
Ω
٥
0
0
×
0
× ×
× ×
×
× ×
× ×
d . w w w//:
d. w w w//: d
d . w w w//:
ttp://www.p
d. w w w//: d

STUDY MODULE DESCRIPTION FORM					
Name of the module/subject Mathematics II		ode 010331111010348981			
Field of study	Profile of study (general academic, practical)	Year /Semester			
Automatic Control and Robotics	general academic	1/1			
Elective path/specialty	Subject offered in:	Course (compulsory, elective)			
•	English	obligatory			
Cycle of study:	Form of study (full-time,part-time)				
First-cycle studies full-time		me			
No. of hours		No. of credits			
Lecture: 30 Classes: 30 Laboratory: -	Project/seminars:	6			
Status of the course in the study program (Basic, major, other) (university-wide, from another field)					
basic	n field				
Education areas and fields of science and art		ECTS distribution (number and %)			
the sciences		6 100%			
Mathematical sciences		6 100%			

Responsible for subject / lecturer:

dr hab. inż. Paweł Kolwicz email: pawel.kolwicz@put.poznan.pl tel. 61 665 2802 Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Mathematical knowledge from the secondary school
2	Skills	Ability to solve problems and mathematical modeling at the level of secondary school
3	Social competencies	Awareness of the need to broaden their competences, willingness to work together as a team

Assumptions and objectives of the course:

- 1. Learning algebraic structures and method of classical and linear algebra.
- 2. Learning the methods and applications of analytic geometry.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. has knowledge of complex numbers, operations with complex numbers, complex numbers form and their applications [K_W01]
- 2. has knowledge of the roots of polynomials, also in the set of complex numbers [K_W01]
- 3. has knowledge of the matrix, operations on matrices, determinants of matrices, inverse matrix calculation, the use of matrix to solve systems of linear equations [K_W01]
- 4. has knowledge of basic algebraic structures monoids, groups, rings and fields [K_W01]
- 5. has knowledge of n-dimensional vector space, database space, database changes, eigenvalues of matrix [K_W01]
- 6. has knowledge of the operations on vectors in three-dimensional space, the basic geometric creations a line, planes, quadrics [K_W01]

Skills:

Faculty of Electrical Engineering

- 1. Can operate on complex numbers, can find certain types of complex roots of polynomials [K_U05]
- 2. can perform operations with matrices, can find an inverse matrix using elementary operations method, calculate the determinant of a matrix, solve the system of linear equations using Gaussian method of elimination [K_U05]
- 3. is able to recognize the algebraic structures, can apply the structure of monoid and group to describe the state of semi-automaton and automaton [K_U05]
- 4. can determine the dimension of space and linear subspace, can solve the matrix eigenvalue problem. [K_U05]
- 5. can perform operations on vectors in three-dimensional space and apply the methods of vector calculus to describe lines and planes. It can classify surfaces of the second degree (quadrics). [K_U05]

Social competencies:

1. He can think and act precisely in the area of process description in technical sciences - [K_K04]

Assessment methods of study outcomes

Lecture

assess the knowledge and skills listed on the written exam including the theoretic part of the subject

Classes

- -testing and rewarding of knowledge needed for solving posed problems (solving tasks),
- -assessment of knowledge and skills tests,
- -the activity during classes causes the upgrade of the classes evaluation.

Course description

Actualization 2017/2018.

Relations. Complex numbers and their applications. Calculus matrix and its application in solving systems of linear equations. Algebraic structures: monoids, infinite and finite groups, rings, fields. Vector spaces (n-dimensional), linear space, linear transformations, analytical geometry of 3-dimensional space: plane, straight line, surfaces.

The applied methods of education:

- -lectures
- 1. lecture led in interactive way with questions formulating to group,
- 2. the students' activity is taken into account during the final evaluation (the preparation of historical reports connected with the mathematicians' related to material),
- 3. in track of lecture initiating the discussion,
- 4. theory presented with connections of current knowledge from previous lectures.
- -classes
- 1. solving on board example tasks,
- 2. detailed the reviewing by leader the solutions of tasks of practice and the discussions over comments,
- 3. the students' activity is taken into account during the final evaluation.

Basic bibliography:

- 1. A.Białynicki-Birula, Algebra, PWN Warszawa 1971 (i późniejsze),
- 2. A.Białynicki-Birula, Algebra liniowa z geometrią, PWN Warszawa 1979 (i późniejsze)
- 3. S. Przybyło, A. Szlachtowski, Algebra i wielowymiarowa geometria analityczna w zadaniach, WNT Warszawa 1994 (i późniejsze),
- 4. Fraleigh, John B., Calculus with analytic geometry, Addison-Wesley. Addison-Wesley, cop. 1980.
- 5. Bodewig, Ewald, Matrix calculus, North-Holland, 1956.
- 6. Edelen, Dominic G. B., Kydoniefs, Anastasios D., An Introduction to linear algebra for science and engineering, Elsevier, 1976.
- 7. Hartfiel, Darald J., Hobbs, Arthur M., Elementary linear algebra, Prindle, Weber & Schmidt, c1987.
- 8. Nering, Evar D., Linear algebra and matrix theory, John Wiley and Sons, Inc., 1963.

Additional bibliography:

- 1. M. Grzesiak, Liczby zespolone i algebra liniowa, Wydawnictwo PP, Poznań 1999,
- 2. Anton, Howard, Calculus with analytic geometry, John Wiley & Sons, 1989.
- 3. Brown, William C., A Second Course in Linear Algebra, John Wiley, 1987.
- 4. Kolman, Bernard, Introductory linear algebra with applications, Macmillan Publishing Co., 1976.
- 5. Nicholson, W. Keith., Elementary linear algebra with applications, Prindle, Weber & Smith, 1986.
- 6. Brown, William C., A second course in linear algebra, John Wiley & Sons, cop. 1988.
- 7. Chih-Han Sah., Abstract algebra, New York; London: Academic Press, cop. 1967.

Result of average student's workload					
Activity	Time (working hours)				
1. Lecture		30			
2. Classes		30			
3. Exam and consultation		10			
4. Preparing to classes		40			
5. Preparing to exam		30			
Student's workload					
Source of workload	hours	ECTS			
Total workload	140	6			
Contact hours	70	3			
Practical activities	70	3			